Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract TheB-field Orion Protostellar Survey (BOPS) recently obtained polarimetric observations at 870μm toward 61 protostars in the Orion molecular clouds with ∼1″ spatial resolution using the Atacama Large Millimeter/submillimeter Array. From the BOPS sample, we selected the 26 protostars with extended polarized emission within a radius of ∼6″ (2400 au) around the protostar. This allows us to have sufficient statistical polarization data to infer the magnetic field strength. The magnetic field strength is derived using the Davis–Chandrasekhar–Fermi method. The underlying magnetic field strengths are approximately 2.0 mG for protostars with a standard hourglass magnetic field morphology, which is higher than the values derived for protostars with rotated hourglass, spiral, and complex magnetic field configurations (≲1.0 mG). This suggests that the magnetic field plays a more significant role in envelopes exhibiting a standard hourglass field morphology, and a value of ≳2.0 mG would be required to maintain such a structure at these scales. Furthermore, most protostars in the sample are slightly supercritical, with mass-to-flux ratios ≲3.0. In particular, the mass-to-flux ratios for all protostars with a standard hourglass magnetic field morphology are lower than 3.0. However, these ratios do not account for the contribution of the protostellar mass, which means they are likely significantly underestimated.more » « lessFree, publicly-accessible full text available April 22, 2026
- 
            Abstract We use polarization data from SOFIA HAWC+ to investigate the interplay between magnetic fields and stellar feedback in altering gas dynamics within the high-mass star-forming region RCW 36, located in Vela C. This region is of particular interest as it has a bipolar Hiiregion powered by a massive star cluster, which may be impacting the surrounding magnetic field. To determine if this is the case, we apply the histogram of relative orientations (HRO) method to quantify the relative alignment between the inferred magnetic field and elongated structures observed in several data sets such as dust emission, column density, temperature, and spectral line intensity maps. The HRO results indicate a bimodal alignment trend, where structures observed with dense gas tracers show a statistically significant preference for perpendicular alignment relative to the magnetic field, while structures probed by the photodissociation region (PDR) tracers tend to align preferentially parallel relative to the magnetic field. Moreover, the dense gas and PDR associated structures are found to be kinematically distinct such that a bimodal alignment trend is also observed as a function of line-of-sight velocity. This suggests that the magnetic field may have been dynamically important and set a preferred direction of gas flow at the time that RCW 36 formed, resulting in a dense ridge developing perpendicular to the magnetic field. However, on filament scales near the PDR region, feedback may be energetically dominating the magnetic field, warping its geometry and the associated flux-frozen gas structures, causing the observed preference for parallel relative alignment.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract We present a study connecting the physical properties of protostellar envelopes to the morphology of the envelope-scale magnetic field. We used the Atacama Large Millimeter/submillimeter Array (ALMA) polarization observations of 61 young protostars at 0.87 mm on ~400–3000 au scales from theB-field Orion Protostellar Survey to infer the envelope-scale magnetic field, and we used the dust emission to measure the envelope properties on comparable scales. We find that protostars showing standard hourglass magnetic field morphology tend to have larger masses, and the nonthermal velocity dispersion is positively correlated with the bolometric luminosity and dust temperature of the envelope. Combining with the disk properties taken from the Orion VLA/ALMA Nascent Disk and Multiplicity survey, we connect envelope properties to fragmentation. Our results show a positive correlation between the fragmentation level and the angle dispersion of the magnetic field, suggesting that the envelope fragmentation tends to be suppressed by the magnetic field. We also find that protostars exhibiting standard hourglass magnetic field structure tend to have a smaller disk and smaller angle dispersion of the magnetic field than other field configurations, especially the rotated hourglass, but also the spiral and others, suggesting a more effective magnetic braking in the standard hourglass morphology of magnetic fields. Nevertheless, significant misalignment between the magnetic field and outflow axes tends to reduce magnetic braking, leading to the formation of larger disks.more » « lessFree, publicly-accessible full text available February 24, 2026
- 
            Abstract Magnetic fields likely play an important role in the formation of young protostars. Multiscale and multiwavelength dust polarization observations can reveal the inferred magnetic field from scales of the cloud to core to protostar. We present continuum polarization observations of the young protostellar triple system IRAS 16293-2422 at 89μm using HAWC+ on SOFIA. The inferred magnetic field is very uniform with an average field angle of 89° ± 23° (E of N), which is different from the ∼170° field morphology seen at 850μm at larger scales (≳2000 au) with JCMT POL-2 and at 1.3 mm on smaller scales (≲300 au) with Atacama Large Millimeter/submillimeter Array. The HAWC+ magnetic field direction is aligned with the known E-W outflow. This alignment difference suggests that the shorter wavelength HAWC+ data is tracing the magnetic field associated with warmer dust likely from the outflow cavity, whereas the longer wavelength data are tracing the bulk magnetic field from cooler dust. Also, we show in this source the dust emission peak is strongly affected by the observing wavelength. The dust continuum peaks closer to source B (northern source) at shorter wavelengths and progressively moves toward the southern A source with increasing wavelength (from 22 to 850μm).more » « less
- 
            Abstract High-resolution, millimeter observations of disks at the protoplanetary stage reveal substructures such as gaps, rings, arcs, spirals, and cavities. While many protoplanetary disks host such substructures, only a few at the younger protostellar stage have shown similar features. We present a detailed search for early disk substructures in Atacama Large Millimeter/submillimeter Array 1.3 and 0.87 mm observations of ten protostellar disks in the Ophiuchus star-forming region. Of this sample, four disks have identified substructure, two appear to be smooth disks, and four are considered ambiguous. The structured disks have wide Gaussian-like rings (σR/Rdisk∼ 0.26) with low contrasts (C< 0.2) above a smooth disk profile, in comparison to protoplanetary disks where rings tend to be narrow and have a wide variety of contrasts (σR/Rdisk∼ 0.08 andCranges from 0 to 1). The four protostellar disks with the identified substructures are among the brightest sources in the Ophiuchus sample, in agreement with trends observed for protoplanetary disks. These observations indicate that substructures in protostellar disks may be common in brighter disks. The presence of substructures at the earliest stages suggests an early start for dust grain growth and, subsequently, planet formation. The evolution of these protostellar substructures is hypothesized in two potential pathways: (1) the rings are the sites of early planet formation, and the later observed protoplanetary disk ring–gap pairs are secondary features, or (2) the rings evolve over the disk lifetime to become those observed at the protoplanetary disk stage.more » « less
- 
            Abstract We present a statistical characterization of circumstellar disk orientations toward 12 protostellar multiple systems in the Perseus molecular cloud using the Atacama Large Millimeter/submillimeter Array at Band 6 (1.3 mm) with a resolution of ∼25 mas (∼8 au). This exquisite resolution enabled us to resolve the compact inner-disk structures surrounding the components of each multiple system and to determine the projected 3D orientation of the disks (position angle and inclination) to high precision. We performed a statistical analysis on the relative alignment of disk pairs to determine whether the disks are preferentially aligned or randomly distributed. We considered three subsamples of the observations selected by the companion separationsa< 100 au,a> 500 au, anda< 10,000 au. We found for the compact (<100 au) subsample, the distribution of orientation angles is best described by an underlying distribution of preferentially aligned sources (within 30°) but does not rule out distributions with 40% misaligned sources. The wide companion (>500 au) subsample appears to be consistent with a distribution of 40%–80% preferentially aligned sources. Similarly, the full sample of systems with companions (a< 10,000 au) is most consistent with a fractional ratio of at most 80% preferentially aligned sources and rules out purely randomly aligned distributions. Thus, our results imply the compact sources (<100 au) and the wide companions (>500 au) are statistically different.more » « less
- 
            ABSTRACT Polarization is a unique tool to study the dust grains of protoplanetary discs. Polarization around HL Tau was previously imaged using the Atacama Large Millimeter/submillimeter Array (ALMA) at Bands 3 (3.1 mm), 6 (1.3 mm), and 7 (0.87 mm), showing that the polarization orientation changes across wavelength λ. Polarization at Band 7 is predominantly parallel to the disc minor axis but appears azimuthally oriented at Band 3, with the morphology at Band 6 in between the two. We present new ∼0.2 arcsec (29 au) polarization observations at Q-Band (7.0 mm) using the Karl G. Jansky Very Large Array (VLA) and at Bands 4 (2.1 mm), 5 (1.5 mm), and 7 using ALMA, consolidating HL Tau’s position as the protoplanetary disc with the most complete wavelength coverage in dust polarization. The polarization patterns at Bands 4 and 5 follow the previously identified morphological transition with wavelength. From the azimuthal variation, we decompose the polarization into contributions from scattering (s) and thermal emission (t). s decreases slowly with increasing λ, and t increases more rapidly which are expected from optical depth effects of toroidally aligned scattering prolate grains. The weak λ dependence of s is inconsistent with the simplest case of Rayleigh scattering by small grains in the optically thin limit but can be affected by factors such as optical depth, disc substructure, and dust porosity. The sparse polarization detections from the Q-band image are also consistent with toroidally aligned prolate grains.more » « less
- 
            Abstract VLA 1623 West is an ambiguous source that has been described as a shocked cloudlet as well as a protostellar disk. We use deep ALMA 1.3 and 0.87 mm observations to constrain its shape and structure to determine its origins better. We use a series of geometric models to fit the uv visibilities at both wavelengths with GALARIO . Although the real visibilities show structures similar to what has been identified as gaps and rings in protoplanetary disks, we find that a modified flat-topped Gaussian model at high inclination provides the best fit to the observations. This fit agrees well with expectations for an optically thick, highly inclined disk. Nevertheless, we find that the geometric models consistently yield positive residuals at the four corners of the disk at both wavelengths. We interpret these residuals as evidence that the disk is flared in the millimeter dust. We use a simple toy model for an edge-on flared disk and find that the residuals best match a disk with flaring that is mainly restricted to the outer disk at R ≳ 30 au. Thus, VLA 1623W may represent a young protostellar disk where the large dust grains have not yet had enough time to settle into the midplane. This result may have implications for how disk evolution and vertical dust settling impact the initial conditions leading to planet formation.more » « less
- 
            Abstract We present 870μm polarimetric observations toward 61 protostars in the Orion molecular clouds with ∼400 au (1″) resolution using the Atacama Large Millimeter/submillimeter Array. We successfully detect dust polarization and outflow emission in 56 protostars; in 16 of them the polarization is likely produced by self-scattering. Self-scattering signatures are seen in several Class 0 sources, suggesting that grain growth appears to be significant in disks at earlier protostellar phases. For the rest of the protostars, the dust polarization traces the magnetic field, whose morphology can be approximately classified into three categories: standard-hourglass, rotated-hourglass (with its axis perpendicular to outflow), and spiral-like morphology. A total of 40.0% (±3.0%) of the protostars exhibit a mean magnetic field direction approximately perpendicular to the outflow on several × 102–103au scales. However, in the remaining sample, this relative orientation appears to be random, probably due to the complex set of morphologies observed. Furthermore, we classify the protostars into three types based on the C17O (3–2) velocity envelope’s gradient: perpendicular to outflow, nonperpendicular to outflow, and unresolved gradient (≲1.0 km s−1arcsec−1). In protostars with a velocity gradient perpendicular to outflow, the magnetic field lines are preferentially perpendicular to outflow, with most of them exhibiting a rotated hourglass morphology, suggesting that the magnetic field has been overwhelmed by gravity and angular momentum. Spiral-like magnetic fields are associated with envelopes having large velocity gradients, indicating that the rotation motions are strong enough to twist the field lines. All of the protostars with a standard-hourglass field morphology show no significant velocity gradient due to the strong magnetic braking.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
